If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2-55x+4=0
a = 14; b = -55; c = +4;
Δ = b2-4ac
Δ = -552-4·14·4
Δ = 2801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-55)-\sqrt{2801}}{2*14}=\frac{55-\sqrt{2801}}{28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-55)+\sqrt{2801}}{2*14}=\frac{55+\sqrt{2801}}{28} $
| 6y+y-y-2y-3y=14 | | 2×(x+1)-3x=x-3x×(x-1) | | y+22/8=10 | | 4-55x-14x^2=0 | | -4x=-2x+18 | | 28k-59=641 | | 27=9j+9 | | 25890w=066339999999999999999999999999999999999999999999999999999999999999999999999999999 | | (2n-5)=3n+15 | | (x+4)+(x+3)=53 | | 8=g+15/5 | | -1+12-19=x | | 4x=3*2x+4 | | 1w=0.9999999999999999999999999999999999999999999999999 | | X-11=25-3x | | 100x-2=140-6x | | -40=2(x+2)+2x= | | (x+4)+(x+3)=127 | | 7-1/t=6/(t^2) | | 4x=3×2x+4 | | 3n-5=2n+17 | | 48=8(q+2) | | 5m+18=8m | | 7-1/t=6/t^2 | | q/6+-48=-40 | | 3d+39=96 | | -25z+-41=709 | | m=−(4+m)+2m=−(4+m)+2 | | 11(t-998)=-99 | | 56=8(y-85) | | 12m-20=-40 | | 9b+19b—9b=-12 |